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Polychlorinated dibenzopdioxins (PCDDs), 
dibenzofurans (PCDFs), and biphenyls 
(PCBs) are lipophilic and can persist in the 
body for years (Schecter et al. 2006). An indi
vidual’s body burden is a product of multiple 
years of exposure (Pinsky and Lorber 1998) 
and a lifetime of varying elimination rates. 
Different congeners of PCDDs, PCDFs, 
and PCBs each have different persistence in 
the human body, reflected in their different 
reported halflives. The apparent halflife, 
defined as the change in concentration in the 
body over time, is the net result of elimina
tion from the body, changes in body com
position, and intake from the environment. 
For each congener, variation in halflife exists 
both among individuals and within the same 
individual over his or her lifetime. This varia
bility can be partially attributed to personal 
characteristics, including age, body fat, smok
ing status, and breastfeeding. The factors that 
affect elimination rates must be taken into 
account when predicting past exposures and 
body burdens of these chemicals and when 
comparing current serum congener profiles to 
exposure media.

Age. In a study of German chemical work
ers, halflives of numerous dioxins and furans 
were positively associated with increasing age 
(FleschJanys et al. 1996). This is consistent 
with a study on the Yusho and YuCheng 
cohorts of halflives of penta (Pe), hexa (Hx), 
and hepta (Hp)  CDFs (Leung et al. 2007). 

Studies on the Ranch Hand cohort show a 
slight negative association (Wolfe et al. 1994) 
or no association (Michalek et al. 1996), but 
this may be due to the narrow age range char
acterizing these cohorts. Studies with child 
or infant subjects report significantly shorter 
halflives than do studies with adult cohorts 
(Kreuzer et al. 1997; Leung et al. 2006, 2007). 
In children < 18 years of age exposed during 
the incident in Seveso, Italy, a strong associa
tion between halflife and age was found, and 
children had significantly shorter halflives 
than did adults (Kerger et al. 2006).

The rapid growth of neonates and children, 
especially in lipid stores, can result in a dra mat
ically reduced apparent halflife through dilu
tion (Clewell et al. 2004). However, the effect 
of dilution alone is not sufficient to create the 
observed reduction in apparent halflife; it may 
also be due to a faster metabolism, an increased 
rate of fecal lipid excretion, or a combination 
of these events (Abraham et al. 1996; Kerger 
et al. 2007b). As children age, their rate of 
growth slows, and the effect of elimination on 
apparent halflife becomes more important 
than that of dilution.

The relationship between age and halflife 
is complex because age is strongly associated 
with other factors that affect halflife length 
(e.g., smoking status, percent body fat). As 
humans age, they generally experience an 
increase in and a redistribution of body fat as 
well as a relative change in organ sizes, causing 

a redistribution of lipophilic chemicals that 
greatly alters their rates of elimination (Van 
der Molen et al. 1996). Additionally, age 
may have an independent effect through an 
agerelated reduction in hepatic elimination 
capacity (Aylward et al. 2005). A strong cohort 
effect is seen in crosssectional studies, caused 
by varying levels of persistent chemicals in the 
environment. During the 1960s and 1970s, 
environmental levels of dioxins were much 
higher than they are today, leading to higher 
body burdens of the more persistent congeners 
in older people, above the level expected from 
persistence alone (Pinsky and Lorber 1998).

Smoking status. Smoking has been associ
ated with lower levels of dioxins and dioxin
like compounds. Active smokers have lower 
PCDD, PCDF, and PCB serum levels than 
do both non smokers and passive smokers 
(Brown and Lawton 2001; Chen et al. 2005), 
and levels of dioxinlike PCBs in human 
milk are negatively related to the smoking 
habits of the mothers (Uehara et al. 2007). 
This is in agreement with results of Flesch
Janys et al. (1996), who observed that the 
halflives of some PCDD and PCDF conge
ners appeared to be dependent on smoking 
status. They observed a significantly faster 
decay in smokers, with increases ranging from 
30% [2,3,7,8tetra chlorodibenzopdioxin 
(TCDD)] to 100% 1,2,3,4,7,8HxCDD. 
Smoking induces the transcription of cyto
chrome P450 (CYP) 1A2 and other enzymes 
responsible for the elimination of dioxin and 
dioxinlike compounds, most likely through 
the activation of the aryl hydrocarbon 
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receptor by polycyclic aromatic hydro carbons 
in tobacco smoke (Zevin and Benowitz 1999). 
The total effect of smoking on halflife may 
be through this increased induction of dioxin
degrading enzymes, or through a combination 
of other physiologic effects.

Body burden. Dioxins are known to 
upregulate the enzymes responsible for their 
own elimination. Modeled and experimental 
data in rats show that at high exposures the 
induction of CYP1A2 is a more important 
factor for persistence in the body than are dif
ferences in adipose tissue distribution (Emond 
et al. 2006). A concentrationdependent bipha
sic elimination rate has been identified in cases 
of acute poisoning (Abraham et al. 2002), 
in the Seveso incident (Aylward et al. 2005; 
Michalek et al. 2002), in children (Kerger et al. 
2006), and in the Yusho and YuCheng rice 
oil poisonings (Leung et al. 2007; Ryan et al. 
1993). Human data suggest that the serum 
concentration where this transition occurs is 
700 ppt (Kerger et al. 2006) for TCDD and 
1,000–3,000 ppt for PCDFs (Leung et al. 
2005). These concentrations are considerably 
higher than those measured in people exposed 
to present background levels.

Body fat. Because dioxins, furans, and 
PCBs are highly lipophilic, they partition pref
erentially in adipose tissue and other body fat. 
High amounts of adipose tissue, estimated by 
body mass index [BMI; weight (kilograms)/
height2 (meters)], are associated with higher 
serum levels of dioxins and furans (Collins 
et al. 2007). Because adipose tissue acts as a 

reservoir for these chemicals, increases in adi
pose tissue result in their storage rather than 
transportation to excretory and metabolizing 
organs. Models based on the rat data demon
strate a linear relationship between increas
ing fat mass and halflife length at low body 
burdens, with the impact of adipose tissue on 
halflife becoming less important at high body 
burdens (Emond et al. 2006).

The relationship between percent body 
fat and halflife is apparent throughout the 
Ranch Hand study (Michalek et al. 1992, 
1996; Michalek and Tripathi 1999), but these 
studies did not find a significant relationship 
between halflife and shortterm changes in 
percent body fat. These findings are supported 
by the German occupational cohort, where a 
1% increase in percent body fat was associ
ated with a decay rate decrease in the range of 
0.0031 ng/kg/year (1,2,3,6,7,8HxCDD) to 
0.0063 ng/kg/year (1,2,3,4,6,7,8HpCDD) 
for dioxins, and about 0.005 ng/kg/year for 
furans (FleschJanys et al. 1996). This study 
did show an increased decay rate in workers 
with intermediate weight loss, but in a limited 
number of people (n = 3). Halflife is moder
ately correlated with both BMI and body fat 
mass in children, but longitudinal data from 
children are difficult to interpret because of 
their fast growth and simultaneous agerelated 
changes (Kerger et al. 2006).

Breast-feeding. For women, lactation can be 
the major route of elimination of many persis
tent lipophilic chemicals (Abraham et al. 1996; 
Schecter et al. 1996). Twenty percent or more 

of the maternal body burden of some persistent 
pollutants, such as PCBs, can be transferred 
during 6 months of lactation (Landrigan et al. 
2002; Niessen et al. 1984). The reduction of 
halflife due to breastfeeding is both congener 
specific and duration dependent. The amount 
of fat in breast milk varies over time, affecting 
the partitioning of chemicals from the body 
(Clewell and Gearhart 2002). Different con
geners partition differently into the breast milk 
from the blood (Schecter et al. 1996, 1998), 
and this distribution is thought to be depen
dent on the molecular weight of the congener. 
Along with molecule diameter and differences 
in lipophilicity, molecular weight may influ
ence membrane permeability, thus causing dif
ferences in distribution (Wittsiepe et al. 2007).

Although studies show an association 
between individual characteristics and the 
pharmacokinetics of dioxins, furans, and 
PCBs in the human body, there is no stan
dard method for determining a chemical’s 
halflife as a function of these factors. Most 
halflife studies for dioxins, furans, and PCBs 
follow accidental or occupational exposures, 
and no single study exists covering the life 
span of people with varying physical charac
teristics. Despite summaries of pharmaco
kinetic data of dioxins, furans (Ogura 2004), 
and PCBs (Lotti 2003), estimations of expo
sure and body burden have been hindered by 
the absence of a halflife range and value for 
each congener.

In this study we provide congenerspecific 
reference halflife values for adults and infants 

Table 1. Congener-specific half-lives [median (range) or parametric estimate] for dioxins from the literature.

Study TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OctaCDD

Flesch-Janys et al. 1996 [median (range)] 7.2 (2.5–∞) 15.7 (3.6–∞) 8.4 (1.4–∞) 13.1 (2.9–∞) 4.9 (2.0–∞) 3.7 (1.6–16.1) 6.7 (1.8–∞)
Flesch-Janys et al. 1996 (parametric estimate) 6.1 11.2 9.8 13.1 5.1 4.9 6.7
Rohde et al. 1999 9.2 (5.8–15.4) 13.9 (9.9–23.1)  13.9 (7.7–19.8) 11.6 (4.3–23.1) 7.7 (5–9.2) 4.3 (2.9–5.8) 8.7 (5.8–11.6)
Geusau et al. 2002 (patient 1) 1.5a

Geusau et al. 2002 (patient 2) 2.9a

Gorski et al. 1984    3.5a  3.2a 5.7a

Leung et al. 2006 (infant 1) 0.43a 0.36a  0.44a  0.36a 0.5a

Leung et al. 2006 (infant 2) 0.36a 0.28a  0.33a  0.28a 0.42a

Poiger and Schlatter 1986 5.8a

Schlatter 1991 9.7
Pirkle et al. 1989 7.1 (5.8–9.6)
Wolfe et al. 1994 11.3 (10.0–14.1)a
Michalek et al. 1996 8.7 (8.0–9.5)
Michalek and Tripathi 1999 7.6 (7.0–8.2)
Michalek et al. 2002 7.5 (4.5–∞)
Kerger et al. 2006 (age < 18 years) 1.6a

Kerger et al. 2006 (age > 18 years) 3.2a

Michalek et al. 2002 (first 0.27 years) 0.34 (0.16–∞)a
Michalek et al. 2002 (3–16.35 years) 6.9 (4.15–∞)
Needham et al. 1994 7.8
Kreuzer et al. 1997 (infant) 0.4a

Kreuzer et al. 1997 (adult) 5a

Ogura 2004 (blood)  6.7 (4.9–9.6)  42 (29–60)a  5.8 (4.0–8.3) 22 (18–26)
Ogura 2004 (adipose) 6.7 (3.3–14) 6.6 (3.6–12)  24 (12–50) 9.2 (3.2–27) 1.4 (0.7–3.0) 5 (1.8–14)
Liem and Theelen 1997b 6.2 8.6 19 70a 8.5 6.6 5.6
Liem and Theelen 1997; Ogura 2004c 7.8 11 12 12 6.8 8.8 5.7
Flesch-Janys et al. 1996; Ogura 2004c 6.3 8.3 7.8 10 4.6 3.2 4.6

∞ (Infinity) indicates that at least one person had an increase in serum concentrations between measurements.
aValues that fit exclusionary criteria for the subset. bAs reported in Ogura (2004). cApplication of model in Ogura (2004).



Half-lives of dioxins, furans, and PCBs

Environmental Health Perspectives • volume 117 | number 3 | March 2009 419

and a method of halflife estimation based on 
individual characteristics. Based on a literature 
search, we defined values that approximate 
the halflife for 29 selected PCDD, PCDF, 
and PCB congeners in infants and adults. We 
examined the relationships between halflife 
and individual characteristics, and present an 
equation that uses the chosen reference values 
to predict halflives based on these individual 
characteristics.

Materials and Methods
We conducted an extensive literature search for 
human halflife or decay values for the 29 con
geners of dioxins, furans, and dioxinlike PCBs 
included in the World Health Organization 
2005 toxic equivalency factor (TEF) scheme 
(Van den Berg et al. 2006). Measured or mod
eled halflife values for each congener and the 
age of the subject or mean age of the cohort 
were recorded from > 30 studies (Tables 1–4).

We selected a subset of data based on the 
following criteria: blood serum concentrations 
< 700 ppt total toxic equivalents (TEQs) at 
the time of sampling, adult subjects, and 

meas ure ments not reported as inaccurate in 
later studies. We retained halflife values that 
were calculated assuming steadystate condi
tions if they were < 25 years, because this 
assumption is inappropriate for more per
sistent substances with significantly higher 
historical levels. The mean and range of half
lives were calculated for the retained subset to 
establish a representative set of halflives for 
each congener in a moderately exposed adult.

We selected the adult reference values 
to represent a 40 to 50yearold with blood 
dioxin concentrations in the range where fat 
drives the rate of elimination. We preferen
tially chose sources that provided consistent 
data across congeners and that were within 
the range of all measured data. Infant refer
ence values were chosen to represent an indi
vidual < 2 years of age. When infant data 
were not available, we multiplied the adult 
reference value for the congener by the ratio 
of the length of the adult halflife over the 
infant halflife for TCDD.

We examined halflife variation as a func
tion of individual characteristics. When the 

mean age of the cohort was not explicitly pro
vided, we estimated the mean age at the mid
point of sampling. When percent body fat 
or total body fat data were not available, we 
converted the mean agespecific BMI reported 
in the National Health and Nutrition 
Examination Survey (NHANES) 2003–2004 
study [Centers for Disease Control and 
Prevention (CDC) 2006] to percent body fat. 
For adults, we used the approach proposed by 
Deurenberg et al. (1991): 

Percent body fat = (1.20 × BMI)  
     + (0.23 × age) – (10.8 × sex) – 5.4, [1]

where sex corresponds to females = 0, and 
males = 1. We used this approach in adults 
because, unlike the method developed by 
Knapik et al. (1983) that is used by Flesch
Janys et al. (1996) and the Ranch Hand 
cohort analysis (Michalek et al 1996; Wolfe 
et al. 1994), it takes into account both age 
and sex. Studies have shown that if age is not 
included in the conversion from BMI to per
cent body fat, it may seriously underestimate 

Table 2. Congener-specific half-lives for furans from the literature.

 2,3,7,8- 1,2,3,7,8- 2,3,4,7,8- 1,2,3,4,7,8- 1,2,3,6,7,8- 2,3,4,6,7,8- 1,2,3,4,6,7,8- 1,2,3,4,7,8,9-
Study TCDF PeCDF PeCDF HxCDF HxCDF HxCDF HpCDF HpCDF OctaCDF

Flesch-Janys et al. 1996   19.6 6.2 6 5.8 3 3.2
 [median (range)]   (12.6–31.5) (1.9–∞) (2.1–∞) (3.1–19.8) (2.1–∞) (2.1–∞)
Flesch-Janys et al. 1996    6.4 7.2  3.1
Rohde et al. (1999)   13.9 8.7 5.8 9.9 3.9
 [mean (range)]   (4.6–23.1) (4.1–17.3) (3.6–9.2) (8.7–12.6) (2.5–4.6)
Gorski et al. 1984       1.7a  1.8a

Leung et al. 2006 (infant 1)   0.23a

Leung et al. 2006 (infant 2)   0.3a

Schecter et al. 1990 (adipose)   4.7 2.9 3.5  6.5
Schecter et al. 1990 (blood)   7.2 4.4 4.3  4.1
Schecter et al. 1990 (combined)   4.5 4 4.9  6.8
Masuda et al. 1995   3.1 3.3   2.4
Ryan and Masuda 1989b  1.7 2.4   2.4
  (1.3–2.9) (2.1–5.1)   (1.6–6.1)
Ryan et al. 1993 (patient 1)   1.9a 2.1a   2.9a

Ryan et al. 1993 (patient 2)   2.3 2.9   2
Ryan et al. 1993 (patient 3)   2.2 2.7   2.1
Iida et al. 1995   9.1 8.6
Masuda 2001, 0.6–15.6 years after onset   2.9 3.5   2.5
 [median (range)]   (2.7–3.6) (2.7–3.6)   (2.2–2.6)
Kashimoto et al. 1983   1.5 1.5
Leung et al. 2005 (> 3 ppb)  1.1a 2.3a   1.5a

Leung et al. 2005 (< 3 ppb)  7.5 5.9   3.6
Leung et al. 2007 (> 3 ppb)  1.1 2.3   1.5
Leung et al. 2007 (< 3 ppb)  7.2 5.7   3.5
Masuda 2001, 14.0–29.1 years after onset   7.7 5.1   3.5
 [median (range)]   (5.2–14.3) (3.9–6.9)   (2.6–6.6)
Masuda et al. 1995   8.9 5.4   3.9
Ryan et al. 1993   9.6 7.8
 [median (range)]   (5.7–36) (4.3–54)
Ogura 2004 (blood)   4.9 9.9 17  4.8
 [mean (95% CI)]   (3.3–7.1) (6.6–15) (11–26)  (3.2–7.2)
Ogura 2004 (adipose) 0.2 0.4 5 3.7 5.8 2.1 1.4  2.1
 [mean (95% CI)] (0.1–0.4) (0.2–1.0) (2.7–9.1) (1.3–10) (1.4–25) (0.8–5.8) (0.5–3.8)  (0.7–6.2)
Liem and Theelen 1997c 0.4 0.9 9.9 5.7 6.2 2.4 2.6  0.2
Liem and Theelen 1997; Ogura 2004d 1.4 2.9 10 7.7 24 3.6 5 10 0.7
Flesch-Janys et al. 1996d,e 2.4 3.9 7.8 5.6 7.1  3.1 2.8 5.2 1.6

Values shown are parametric estimates except where indicated. ∞ (Infinity) indicates that at least one person had an increase in serum concentrations between measurements.
aValues that fit exclusionary criteria for the subset. bValue not defined. cAs reported in Ogura (2004). dApplication of model in Ogura (2004). eAlso reported a parametric estimate of 7.1 for 
1,2,3,7,8,9-HxCDF.
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percent body fat in older people (Deurenberg 
et al. 1991; Hattis et al. 2003).

In children (0–19 years of age), we used 
a series of agebased equations presented by 
Hattis et al. (2003) to predict percent body 
fat for each age in months. Total body fat was 
estimated by multiplying the average weight 
reported in the NHANES data for a given 
age and sex by the calculated percent body fat 
(CDC 2006).

Based on the apparent relationships 
between halflife and these parameters, we 
propose a procedure of halflife estimation 
that is a function of age, percent body fat, 
smoking status, and breastfeeding.

Results and Discussion
Review of reported half-life values. A compre
hensive report of halflife values for dioxins, 
furans, and PCBs is presented in Tables 1–4. 
Studies that are listed more than once are 
those that report multiple halflife values, gen
erally corresponding to measurements on dif
ferent individuals. Of the studies examined, 
onethird are limited to TCDD: five of these 
report on the Ranch Hand cohort (Michalek 
et al. 1996, 2002; Michalek and Tripathi 
1999; Pirkle et al. 1989; Wolfe et al. 1994), 
three with kinetic data based on the incident 
in Seveso, Italy (Kerger et al. 2006; Michalek 
et al. 2002; Needham et al. 1997), one on a 
poisoning incident in Austria (Geusau et al. 
2002), and two based on an adult male volun
teer (Poiger and Schlatter 1986; Schlatter 
1991). Sixteen different measurements are 
based on the YuCheng and Yusho cohorts 

(Chen et al. 1982; Kashimoto et al. 1983; 
Leung et al. 2005, 2007; Ryan and Masuda 
1989, 1991; Ryan et al. 1993; Shirai and 
Kissel 1996). Six studies report models or 
measurements based on occupational expo
sures (Brown et al. 1989; FleschJanys et al. 
1996; Rohde et al. 1999; Schecter et al. 1990; 
Van der Molen et al. 2000; Wolff et al. 1992). 
Five studies have information only on infants 
and children (Gorski et al. 1984; Kerger et al. 
2007a, 2007b; Kreuzer et al. 1997; Leung 
et al. 2006; Wolff and Schecter 1991), and 
two data sets are based on general populations 
(Ogura 2004). The average number of values 
for dioxins and furans is 10, and among the 
PCBs the average is 4. No halflife data were 
available for 1,2,3,7,8,9HxCDF.

The ranges of the subsets of reported val
ues for adults are shown in Figure 1 (dioxins 
and furans) and Figure 2 (PCBs), and the val
ues are shown in Tables 1–3. The compari
son of reported halflife values reveals large 
variation across congeners. For example, the 
mean halflives of octachlorinated dibenzo
furan (octaCDF), tetrachlorinated dibenzo
furan (TCDF), and 1,2,3,7,8PeCDF are all 
< 3 years, whereas the mean halflives for some 
of the HxCDD congeners are more than a 
decade. The halflives in the PCBs range from 
only a few months (PCB77) to a few decades 
(PCB157), and one study reported a > 100
fold range in metabo lic clearance rates between 
PCB congeners (Brown and Lawton 2001).

Within each congener, halflife values 
reported from the literature vary substantially, 
typically by a factor of 2–3, but up to a factor 

of 35 within the subset. This variation may be 
a result of different exposure concentrations 
or scenarios, differences in the demographics 
of the considered cohort, or differences in the 
pharmaco kinetic model used in halflife calcu
lation. Several studies reported on a single per
son or had very small sample sizes, resulting in 
unstable mean values. For example, the 15.7
year halflife reported by FleschJanys et al. 
(1996) for 1,2,3,7,8PeCDD became 11 years 
when they excluded one worker close to back
ground. Some of the variability in reported 
halflife values can be explained through dif
ferences in physiologic processes among indi
viduals and different congener properties. 
However, very short halflives (i.e., < 1 year) 
are unlikely for the most frequently found con
geners because of the high exposures required 
to sustain measurable body burdens, and very 
long halflives (> 10 years) may be artifacts of 
ongoing exposures (Shirai and Kissel 1996).

Most cohorts consist of adult males 
exposed to high concentrations, although mea
surements were sometimes carried out years 
after exposure. Halflife meas ure ments for per
sons at or near background levels, including 
those with no history of substantial exposure or 
those who have returned to background levels 
after significant exposure, may be confounded 
by the effect of probable continuous exposure 
to background levels of dioxins. Halflife mea
surements and the influence of other factors 
(e.g., smoking, body fat) may be better evalu
ated when sampled from persons with higher 
accidental exposures, if concentrationdepen
dent effects can be clearly accounted for.

Table 3. Congener-specific half-lives for PCBs from the literature. 

Study PCB-77 PCB-81 PCB-126 PCB-169 PCB-105 PCB-114 PCB-118 PCB-123 PCB-156 PCB-157 PCB-167 PCB-189

Masuda et al. 1995        1.7  4.9
Shirai and Kissel 1996     10.4   1.1  1.62
Ryan et al. 1993 (patient 1)a       1.1b  3.3b

Ryan et al. 1993 (patient 2)a       1.2  5.4
Ryan et al. 1993 (patient 3)a       1.3  4
Chen et al. 1982      0.56  0.82
Shirai and Kissel 1996c     0.58  0.83  ∞b

Shirai and Kissel 1996d     0.51  0.77  ∞b

Masuda 2001, 0.6–15.6 years after onset       1.6  5.3
 [median (range)]       (1.5–1.9)  (3.8–5.6)
Masuda 2001, 14.0–29.1 years after onset       17.6   13.2
 [median (range)]       (6.9–33.7)  (8.5–21.5)
Ryan and Masuda 1991,
 Masuda et al. 1995        17.6  13.4
Ryan et al. 1993e    10.4
Brown et al. 1989      3.9  5.8
Brown and Lawton 2001 5.02  11  7.0 31.7b 10.8 15.3 100b 20b 35b 166.7b

Buhler et al. 1988        0.5b

Wolff and Schecter 1991           4.6b

Wolff et al. 1992      ∞b  9.6
 [mean (range)]       (7.4–23)
Ogura 2004 (blood)   1.6 7.3 2.4 10 3.8 7.4 16 18 12 22
 [mean (95% CI)]   (1.2–2.1) (5.2–10.4) (1.7–3.3) (7.4–14.2) (2.8–5.3) (5.3–10) (11–23) (13–26) (8.7–17) (16–32)
Ogura 2004) (adipose) 0.1 0.7 2.7 13 2.7 25 4.2 12 38 27 10 41
 [mean (95% CI)]  (0.4–1.2) (1.6–4.5) (8.8–19) (1.5–4.8) (16–40)b (2.3–7.5) (5.8–25) (23–63)b (16–44)b (5.2–19) (24–69)b
Liem and Theelen 1997 0.1  2.7        

Values shown are parametric estimates except where indicated. ∞ (Infinity) indicates that at least one person had an increase in serum concentrations between meas urements.
aYu-Cheng. bValues that fit exclusionary criteria for the subset. cFirst and second samples from Chen al. (1982). dFirst and third samples from Chen al. (1982). eYusho.
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Most of the studies report concentrations 
normalized by gram of lipid and assume a con
served equilibrium between dioxins and lipids 
across the body. The suitability of this mea
surement to calculate the overall body burden 
depends on the distribution of the congener 
into adipose tissue. Although different conge
ners partition differently into different organs 
(Iida et al. 2007; Kitamura et al. 2001), a cor
relation between levels in the blood and levels 
in adipose tissue is supported (Iida et al. 1999).

Variation in half-life as a function of age. 
We observed a positive association between 
age and halflife (Figure 3). Although this 
may indicate a direct relationship between age 
and halflife, it also incorporates the effect of 
other parameters, such as agerelated changes 

in percent body fat. We included the influ
ence of body fat, using BMI as a surrogate, in 
the displayed regressions, which use the mean 
agespecific BMI reported for the 2003–2004 
NHANES study (CDC 2006).

The points representing literaturereported 
data in Figures 3–6 are generally averages of a 
range of ages and a range of halflife values. 
These ranges, where available, are presented 
in Tables 1–3. Application of the model pro
posed by Van der Molen et al. (2000) results 
in nonlinear variations at low ages. These 
variations are linked to modeled variations 
in body fat during adolescence, but have not 
been confirmed by experimental data.

The Kerger et al. (2006) data correspond 
to children with concentrations < 700 ppt 

and support the hypothesis of a close to linear 
increase in halflife between ages 0–35 years. 
The slopes calculated with this method were 
similar to slopes for adults calculated with the 
method provided by FleschJanys et al. (1996), 
spanning adults 30–80 years of age. However, 
the equation proposed by FleschJanys et al. 
(1996) may be problema tic for ages > 60 years 
because very small variations in the elimina
tion rate could lead to substantial divergence 
in halflife length, as observed in the case of 
1,2,3,7,8PeCDD (Figure 4).

Overall, we observed a nearly linear asso
ciation between halflife and age, which is 
most likely linked to the combined effects of 
growthcaused dilution at young ages and an 
increase in body fat at older ages. However, 

Table 4. Characteristics and study information for studies with congener-specific half-life data.

   Time from exposure Time of follow-up
Study Age (years) No. (years) (years) Cohort

Flesch-Janys et al. 1996  32–79 (mean = 48.7) 43 0–37 (mean 5.4) 1–9 (mean 5.6) Occupationala
Rohde et al. 1999  41–73 6 — 4–6 Occupationalb
Geusau et al. 2002  27, 30 2 0 3 Poisoned Austrian women
Gorski et al. 1984  Child 1 — 2.5 Child (wood in home)c
Leung et al. 2006  Infant 2 0 1 Breast-fed infants 
Schecter et al. 1990  Late 50s to early 60s 1 2 3 Occupational
Poiger and Schlatter 1986  42 1 0 < 1 Adult male volunteer
Schlatter 1991  47 1 — 6 Adult male volunteerd

Pirkle et al. 1989  — 36 > 10 5 Ranch Hand
Wolfe et al. 1994  31.8–66 337 > 10 5 Ranch Hande

Michalek et al. 1996  31.8–66 213 14.8 10.3 Ranch Hande

Michalek et al. 1999  31.8–66 97 > 9.3 15 Ranch Hande

Michalek et al. 2002  18–38 97 9–33 15 Ranch Handf

Kerger et al. 2006  0.5–16.6 45 0 17 Seveso
Kerger et al. 2006  > 18 45 0 17 Seveso
Michalek et al. 2002  16–71 35 0 0.27 Seveso
Michalek et al. 2002  16–71 54 3 13.35 Seveso
Needham et al. 1994  — 27 — — Sevesoc

Kreuzer et al. 1997  < 1 20 0 < 1 Infants
Kreuzer et al. 1997  40 — — — Model based on infantsa

Masuda et al. 1995  25 3 0.6 15 Yu-Chengc,g

Ryan and Masuda 1989  — 2–4  — Yu-Chengh

Shirai and Kissel 1996  17–69 19 1–14 8–9 Yu-Cheng and Yushoi

Ryan et al. 1993  17, 25, 33 3 1–10 9 Yu-Cheng (individual)
Iida et al. 1995  — 7 14 1 Yu-Cheng and Yushob,j

Chen et al. 1982  — 17 0 1 Yu-Cheng
Shirai and Kissel 1996  — 20–24 < 1 0.7–4.7 Yu-Chengi

Masuda 2001  17–33 3 1 15 Yu-Cheng
Kashimoto et al. 1983  — 30 < 1 1–2 Yu-Chengk

Leung et al. 2005  18–80 8 1–14 15 Yu-Cheng and Yusho
Leung et al. 2007  18–80 8 1–14 15–19 Yu-Cheng and Yusho
Masuda 2001  31–51 5 14 16 Yusho 
Masuda et al. 1995  — 5 — — Yushoc,g

Ryan et al. 1993  33–69 16 14–22 8 Yusho (five individuals)
Brown et al. 1989  — 39 1–26 7.7 Occupational
Brown and Lawton 2001  — 1–10 1–6 11 Occupationall
Buhler et al. 1988  50 1 < 1 < 1 Male volunteer
Wolff and Schecter 1991  2–6 4,5 — — Children, contaminated materialm,n

Wolff et al. 1992  45 18–165 < 1 3.83 Occupational
Ogura 2004 (blood) 20–65 253 — — General Japanese population
Ogura 2004 (adipose) 40–59 10 — — General Japanese population
Liem and Theelen 1997  — — — — General Dutch populationc

Liem and Theelen 1997; Ogura 2004 — — — — General Dutch populationa,o

Flesch-Janys et al. 1996; Ogura 2004 48.7 — — — Occupationala,o

—, not available.
aModeled value. bFecal clearance only. cData accessed from Ogura (2004). dData accessed from Flesch-Janys et al. (1996). eAge in 1982. fAge during tour of duty. gAlso published by Ryan 
and Masuda (1991). hData accessed from U.S. Environmental Protection Agency (2000). iApplication of model presented to data from study in Chen et al. (1982). jData accessed from Ryan 
et al. (1993). kData accessed from abstract. lReported two metabolic clearance rates, not apparent half-life values; clearance rates were assumed to be additive, and half-lives were cal-
culated as follows: t1/2 = 1/ka  + 1/kb. mDid not account for growth; may be near background. nData accessed from Shirai and Kissel (1996). oApplication of kinetic model to data. 
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this association does not account for inter
individual variation at each age.

Variation of half-life with body fat. 
Percent body fat is a good predictor of 
halflives in adults, as shown for TCDD in 
Figure 5. This method is inappropriate for 
infants and children (identified by oval in 
figure) because of drastic changes in percent 
body fat and short halflives.

The discrepancy between percent body 
fat and halflives observed at young ages sug
gests the use of absolute body fat mass to 
account for the effect of fat over the entire 
age range (Figure 6). We obtained total body 
fat by multiplying calculated percent body 
fat by agespecific NHANES weight aver
ages (CDC 2006). Further data collection is 
needed to confirm the validity of the relation
ship between body fat mass and halflife.

Reference half-life values. We preferentially 
used the regression method used by Flesch
Janys et al. (1996) for adult reference halflife 
values because it covers multiple congeners 
in a consistent way and incorporates infor
mation for percent body fat, sex, and smok
ing status, and because the resulting values 
are within the range of the other values in 
the literature. In the case of TCDD, we used 
the single median value given by FleschJanys 
et al. (1996) as the reference value, because of 
its consistency with other reported data. For 
dioxin and furan congeners not reported by 
FleschJanys et al. (1996), we used the model 
proposed by Van der Molen et al. (2000) 
to determine a reference halflife, using the 
median age (48.7 years) and percent body fat 
(21.9%) from FleschJanys et al. (1996). For 
1,2,3,7,8,9HxCDF, which had no available 
halflife data, we used the reference halflife 
for 1,2,3,6,7,8HxCDF.

We based reference halflives of PCB77 
and PCB81 on measurements from samples 
of adipose tissue, whereas we determined ref
erence halflives for the 10 remaining PCB 
congeners based on measurements of blood 
(Ogura 2004). These values correspond to 
halflives observed in the general Japanese 
population, assuming steadystate conditions. 
Because of the large decrease in dioxin, furan, 
and PCB concentrations in the environment 
in the last 30 years, the steadystate assump
tion is only appropriate for congeners with 
halflives that are significantly shorter than 
the time elapsed from the peak in environ
mental concentrations; the halflives of more 
persistent congeners could be over estimated.

We based reference halflife values for 
infants on congenerspecific values reported 
by Leung et al. (2006) where available. These 
values are modeled estimates based on ear
lier reported concentration data for PCDD 
and PCDF congeners in breastfed infants 
(Abraham et al. 1996, 1998). These reference 
values are based on existing data, and better 
numbers may be available with the generation 
of new data. In some cases, it may be appro
priate to use the median values, also provided 
in Tables 5 and 6.

Methods for individual half-life calcu-
lation. Based on the relationships discussed 
above, we propose two methods to predict 
individualized apparent halflives of dioxins, 
furans, and PCBs over a lifetime. We specifi
cally focused on halflives resulting from mod
erate levels of exposure, comparable to those 
resulting from the general exposure of the U.S. 
population. The use of a simple multi linear 
regression model to predict halflife as a func
tion of age and BMI or body fat is problematic 
because data for age and BMI coefficients are 

lacking for several congeners, and as previously 
discussed, percent body fat is not a good pre
dictor of halflives at young ages.

To overcome these limitations, the first 
method that we propose is a linear rela
tionship of halflives with age. We found 
the slope (βage) and the intercept [β0(age)] 
coefficients by using a linear interpolation 
between the infant and adult reference 
halflives (shown in Tables 5 and 6). We 
accounted for inter individual variation in 
body composition and smoking habits with 
two multiplicative factors (Equation 2). 
The observed linear influence, supported by 
modeled results (Emond et al. 2006), of the 
percent body fat at age = i was incorporated 
in the calculation by multiplying the origi
nal equation by the ratio of the individual 
percent body fat (pbfi) to the reference per
cent body fat for that age [pbfref(agei)]. We 
determined the reference percent body fat 
by converting the agespecific BMI values 
from the NHANES data to percent body fat 
using the method proposed by Deurenberg 
et al. (1991) and presented above. Similarly, 
we introduced the effect of smoking through 
a unit less multiplicative smoking factor 
(SFi). The ratios of the decay rate of smok
ers to non smokers in FleschJanys et al. 
(1996) were used when available, ranging 
from 0.5 to 0.7, corresponding to a 50% to 
30% reduction in halflife (Tables 5 and 6); 
when not available, we used the geometric 
mean of all available smoking factors, cor
responding to a 35% reduction in halflife. 
We accounted for differences between sexes 
indirectly by the different percent body fat 
values for males and females at each age. The 
predicted halflife (years) for an individual 
i as a function of age, smoking status, and 

Figure 1. Range of half-life values (in years) for dioxins and furans based on a 
subset of values from the literature. Bars represent 25th, 50th, and 75th percen-
tiles, and whiskers indicate the range. Diamonds indicate the reference values 
within this range, circles indicate outliers, and asterisks indicate extreme cases.
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Figure 2. Range of half-life values (in years) for PCBs based on a subset of 
values from the literature. Bars represent 25th, 50th, and 75th percentiles, and 
whiskers indicate the range. Diamonds indicate the reference values within 
this range, circles indicate outliers, and asterisks indicate extreme cases.
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percent body fat i was calculated using the 
empirical model formalized by Equation 2:

  

t1/2 age, smoke, pbf( )i = β
0age

+ βage × agei
⎡
⎣⎢

⎤
⎦⎥

× SFi ×
pbfi

pbfref agei( )

.

( )

 
[2]

This equation estimates adult halflives 
that are comparable to those obtained with 
the approach proposed by FleschJanys et al. 
(1996) (see Supplemental Material, Figure 
1; available online at http://www.ehponline.
org/members/2008/11781/suppl.pdf), while 
extending its applicability to children and to 
adults > 60  years of age.

A mathematical equation describing 
the additional rate of elimination due to 
breastfeeding (Equation 3) is based on the 

observed effect of breastfeeding in a cohort 
of German women (Wittsiepe et al. 2007). 
According to that study, a breastfeeding 
woman expels an estimated 8.76 kg fat per 
year through lactation [qf (kg/day), 0.8 kg 
milk/day of average 3% lipid], and partition 
coefficients between blood lipid and milk 
fat for each congener (KBM, unitless) range 
from 0.5 and 4.3 (Tables 5 and 6) (Wittsiepe 
et al. 2007). Δtbfed (unitless) represents the 
fraction of the considered year during which 
the woman was actively breastfeeding, and 
pbfi (%) and BWi (kg) are the woman’s per
cent body fat and body weight, respectively.

   

kbfed =
q f × Δtbfed

K BM ×
pbfi

100
× BWi

. [3]

Assuming no interaction between breast
feeding and the other halflife determinants, 
the overall predicted apparent halflife for 
a woman who is actively breastfeeding is 
obtained by adding the effect of elimination 
through breastfeeding to other ageadjusted, 
smokingadjusted, and bodyfat–adjusted 
processes.

  
t1/2 total( ) = 1

t1/2 age,smoke,pbf( )
+

kbfed

1n 2( )
⎡

⎣
⎢

⎤

⎦
⎥

−1

.
 
[4]

This method predicts a halflife of 
4.3 years for TCDD in a 30yearold, non
smoking woman with 30% body fat if she 
did not breastfeed that year, and a halflife of 
1.8 years if she breastfed for 6 months.

The alternative proposed strategy to 
model congenerspecific halflives is based 
on an observed apparently linear relationship 

Figure 3. Half-life of TCDD as a function of age. 
aApplication of the model presented by Van der Molen et al. (2000) to the Flesch-Janys 
et al. (1996) data as done by Ogura (2004). bValues from the current literature presented in 
Table 1. cLinear interpolation between the infant and adult reference half-lives (slope and 
intercept given in Table 5).

20

18

16

14

12

10

8

6

4

2

0
0 20 40 60 80 100

Age (years)

H
al

f-
lif

e 
(y

ea
rs

)

Kerger et al. 2007a
Flesch-Janys et al. 1996
Van Der Molen et al. 2000
Kerger et al. 2006
Van Der Molen et al. 2000
  (Flesch-Janys)a

Literature-reported datab

Linear interpolationc

Kerger et al. 2007b

+

×

Figure 4. Half-life of 1,2,3,7,8-PeCDD as a function of age. Application of the 
equation proposed by Flesch-Janys et al. (1996) for ages > 60 years may be 
problematic because very small variations in the elimination rate could lead to 
substantial divergence in half-life length. 
aApplication of the model presented by Van der Molen et al. (2000) to the Flesch-Janys 
et al. (1996) data as done by Ogura (2004). bValues from the current literature presented in 
Table 1. cLinear interpolation between the infant and adult reference half-lives (slope and 
intercept given in Table 5).
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Figure 5. TCDD half-life as a function of percent body fat. The oval indicates 
the area where the relationship of increased half-life with increased body fat 
does not hold; these values represent young subjects. Literature-reported data 
enclosed in squares indicate subjects whose half-lives were measured when 
they had serum concentrations that were well above the level of increased 
induction of degradation enzymes. 
aApplication of the model presented by Van der Molen et al. (2000) to the Flesch-Janys et al. 
(1996) data as done by Ogura (2004). bValues from the current literature presented in Table 1.
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Figure 6. TCDD half-life as a function of total body fat. The two points shown in 
the square represent subjects whose half-lives were measured when they had 
serum concentrations well above the level of increased induction of degradation 
enzymes.
aApplication of the model presented by Van der Molen et al. (2000) to the Flesch-Janys et al. 
(1996) data as done by Ogura (2004). bValues from the current literature presented in Table 1.
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(Figure 6) with absolute body fat, formal
ized as follows, using the same correction for 
smoking status as in Equation 2:

t1/2(smokei,bfi) = [β0(bf) + βbf × bfi] × SFi. [5]

There is insufficient data to test this equa
tion, so this approach requires further data 
collection and validation.

Conclusion
Reported halflives of dioxin and dioxinlike 
congeners in humans vary widely between 
and within different dioxin, furan, and PCB 
congeners. Age, a measure of body fat, smok
ing habits, and breastfeeding status are 
strong determinants of the elimination rates 
observed in humans. The present study inte
grates these critical factors into an empirical 
model that predicts the halflives of the 29 
World Health Organization TEF scheme 
congeners over a human life span. We sup
port a method of halflife estimation that is 
a function of age. We found a nearly linear 
relationship between halflife and body fat, 
but further study and new data are required 
to evaluate the validity of any estimation 
methods based on this approach.

Pharmacokinetic information is scarce 
for many PCB congeners, and many exist
ing studies report on PCB mixtures rather 
than individual congeners. Further, many 
of the existing data sets do not take into 
account the effect of ongoing exposures to 
background levels. The halflife range and 
reference values may be refined as more 
congenerspecific data becomes available. 
Pharmacokinetic studies across multiple con
geners, which take into consideration demo
graphic factors, are necessary to determine 
accurate elimination rates. Further study 
into the causes of inter individual and intra
individual elimination rate variability, such 
as the effect of genetic polymorphisms and 
sensitivity to known factors, would refine 
halflife estimation accuracy.

The equations described here represent a 
simple and relatively consistent approach that 
can be used to determine individual apparent 
halflives for numerous dioxin, furan, and 
PCB congeners. Median and reference values 
are representative of average behavior rather 
than extremes. These values cannot be used for 
highly exposed persons, for whom high TEQ 
will induce higher elimination. However, the 
proposed method of halflife prediction can 

be used to relate past and  present intake to 
serum concentrations and is useful to under
stand the effect of demographic characteristics 
on serum concentrations.
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Table 5. Reference half-lives (in years) and model parameters for Equations 2 and 3 for dioxins and furans.

 Infant Adult Median  Reference Source
  half-life half-life half-life adult age (years) (adult values) SF KBM Intercept (β0) Slope (βage)

TCDD 0.4a 7.2 6.3 48.7 b 0.739 0.92 0.26 0.15
1,2,3,7,8-PeCDD 0.3a 11.2 8.5 48.7 c 0.683 1.21 0.09 0.23
1,2,3,4,7,8-HxCDD 0.5 9.8 10.90 48.7 c 0.509 1.44 0.35 0.20
1,2,3,6,7,8-HxCDD 0.4a 13.1 12 48.7 c 0.635 1.32 0.12 0.27
1,2,3,7,8,9-HxCDD 0.3a 5.10 6.8 48.7 c 0.665 1.51 0.18 0.10
1,2,3,4,6,7,8-HpCDD 0.3a 4.9 3.7 48.7 c 0.525 1.87 0.22 0.10
OctaCDD 0.5a 6.7 5.7 48.7 c 0.551 3.3 0.33 0.14
2,3,7,8-TCDF 0.1 2.1 0.9 48.7 d 0.648 1.1 0.08 0.04
1,2,3,7,8-PeCDF 0.2 3.50 1.9 48.7 d 0.648 1.6 0.13 0.07
2,3,4,7,8-PeCDF 0.3a 7.0 4.9 48.7 d 0.648 1.15 0.13 0.14
1,2,3,4,7,8-HxCDF 0.4 6.4 4.8 48.7 c 0.692 1.79 0.23 0.13
1,2,3,6,7,8-HxCDF 0.4 7.2 6 48.7 c 0.695 1.91 0.26 0.15
1,2,3,7,8,9-HxCDF 0.4 7.2 — 40.0 e 0.648 1.39f 0.19 0.15
2,3,4,6,7,8-HxCDF 0.2 2.8 3.4 48.7 d 0.648 1.38 0.10 0.06
1,2,3,4,6,7,8-HpCDF 0.2 3.1 3 48.7 c 0.832 2.59 0.11 0.06
1,2,3,4,7,8,9-HpCDF 0.3 4.6 5.2 48.7 d 0.648 4.28 0.17 0.09
OctaCDF 0.1 1.4 1.6 48.7 d 0.648 3.4 0.05 0.03

—, not available. KBM, blood lipid to milk fat ratio; SF, smoking factor.
aInfant reference values taken from Leung et al. (2006). bFlesch-Janys et al. (1996), median value. cFlesch-Janys et al. (1996), regression values. dVan der Molen et al. (2000). eNo data for 
this congener (the half-life values were taken to be the same as 1,2,3,6,7,8-HxCDF). fGeometric mean of all KBM values. 

Table 6. Reference half-lives (in years) and model parameters for Equations 2 and 3 for PCBs.

 PCB-77 PCB-81 PCB-126 PCB-169 PCB-105 PCB-114 PCB-118 PCB-123 PCB-156 PCB-157 PCB-167 PCB-189

Infant reference half-life (years) 0.0 0.0 0.1 0.4 0.1 0.5 0.2 0.4 0.9 1.0 0.7 1.2
Adult reference half-life (years) 0.1 0.7 1.6 7.3 2.4 10.0 3.8 7.4 16.0 18.0 12.0 22.0
Median half-life 0.1 0.73 2.7 10.4 2.4 25 1.6 12 5.35 20 12 41
Reference adult age (years) 49.5 49.5 42.5 42.5 42.5 42.5 42.5 42.5 42.5 42.5 42.5 42.5
Source a a b b b b b b b b b b

SF 0.648 0.648 0.648 0.648 0.648 0.648 0.648 0.648 0.648 0.648 0.648 0.648
KBM 1.39c 1.39c 0.67 1.24 0.72 0.69 0.87 0.52 1.16 1.26 1.19 1.99
Intercept (β0) 0.00 0.03 0.05 0.24 0.08 0.33 0.13 0.24 0.53 0.59 0.39 0.72
Slope (βage) 0.00 0.01 0.04 0.17 0.06 0.23 0.09 0.17 0.37 0.42 0.28 0.51

KBM, blood lipid to milk fat ratio; SF, smoking factor.
Sources of adult reference values: aOgura (2004) blood data; bOgura (2004) adipose tissue data. cGeometric mean of all KBM values. 
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